Nonlocal correlation effects in fermionic many-body systems: Overcoming the noncausality problem

نویسندگان

چکیده

Motivated by the intriguing physics of quasi-two-dimensional fermionic systems, such as high-temperature superconducting oxides, layered transition metal chalcogenides, or surface interface development many-body computational methods geared at including both local and nonlocal electronic correlations has become a rapidly evolving field. It been realized, however, that success can be hampered emergence noncausal features in effective observable quantities involved. Here, we present an approach wherein techniques dynamical mean-field theory (DMFT) are extended to interactions, which preserves causality physically intuitive interpretation. Our strategy implications for general class DMFT-inspired adapted cluster, dual boson, fermion with minimal effort.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Many-body exchange-correlation effects in graphene

We calculate, within the leading-order dynamical-screening approximation, the electron self-energy and spectral function at zero temperature for extrinsic (or gated/doped) graphene. We also calculate hot carrier inelastic scattering due to electron–electron interactions in graphene. We obtain the inelastic quasiparticle lifetimes and associated mean free paths from the calculated self-energy. T...

متن کامل

Radiative heat transfer: many-body effects

Heat transfer by electromagnetic radiation is one of the common methods of energy transfer between objects. Using the fluctuation-dissipation theorem, we have studied the effect of particle arrangement in the transmission of radiative heat in many-body systems. In order to show the effect of the structure morphology on the collective properties, the radiative heat transfer is studied and the re...

متن کامل

Many-body effects in the mesoscopic x-ray edge problem

Many-body phenomena, a key interest in the investigation of bulk solid state systems, are studied here in the context of the x-ray edge problem for mesoscopic systems. We investigate the many-body effects associated with the sudden perturbation following the x-ray excitation of a core electron into the conduction band. For small systems with dimensions at the nanoscale we find considerable devi...

متن کامل

Exact stochastic mean-field approach to the fermionic many-body problem.

We investigate a reformulation of the dynamics of interacting fermion systems in terms of a stochastic extension of time-dependent Hartree-Fock equations. From a path-integral representation of the evolution operator, we show that the exact N-body state can be interpreted as a coherent average over Slater determinants evolving in a random mean-field. The imaginary time propagation is also prese...

متن کامل

Chaos in fermionic many-body systems and the metal-insulator transition.

We show that finite Fermi systems governed by a mean field and a few-body interaction generically possess spectral fluctuations of the Wigner-Dyson type and are, thus, chaotic. Our argument is based on an analogy to the metal-insulator transition. We construct a sparse random-matrix scaffolding ensemble (ScE) that mimics this transition. Our claim then follows from the fact that the generic ran...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Physical review

سال: 2022

ISSN: ['0556-2813', '1538-4497', '1089-490X']

DOI: https://doi.org/10.1103/physrevb.105.245115